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Some numerical solutions of a variable-coefficient Korteweg-de Vries equation 
are presented. This particular equation was derived by the author recently 
(Johnson 1972) in an attempt to describe the development of a single solitary 
wave moving onto a shelf. Soliton production on the shelf was predicted and 
this is confirmed here. Results for two and three solitons are reproduced and two 
intermediate shelf depths are also considered. In  these latter two cases both 
solitons and an oscillatory wave occur. One of the profiles corresponds to the 
integrations performed by Madsen & Mei (1969) and a comparison is made. 

1. Introduction 

problem for the Korteweg-de Vries (KV) equation: 
In  the last few years, considerable interest has centred on the initial-value 

ut + UU$ + u,,, = 0, u(x,  0) = f ( x ) .  (1)  

The greatest success has been achieved by considering the solution u(x, t )  such 

u(x,  t) , f(x)-+ 0 as x+ k 00. 
that 

In  particular, the papers published by Miura, Gardener & Kruskal (1968, 1969, 
1970) review most of the recent work on this problem. The ‘soliton’ formation 
from a suitable initial condition is now well known, but it is worth noting that 
it was first observed in numerical solutions of (1) (see Zabusky & Kruskal 1965; 
Zabusky & Galvin 1971). 

Recently, Johnson (1972, henceforth referred to as I) considered the problem 
of a solitary wave moving onto a shelf and derived a Korteweg-de Vries equation 
with variable coefficients to describe this motion. This particular problem was 
first discussed in detail by Madsen & Mei (1969), who compared numerical 
results with some experimental data. Reasonable agreement was obtained. For 
the numerical solutions they integrated what were essentially the full inviscid 
equations. 

However, by making use of formal asymptotic methods, a single equation 
can be derived (see I) to describe this phenomenon. This equation takes the form 
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where d ( X )  is the local variable depth, and the observed wave amplitude is 
proportional to ud-3. It can then be shown that, if a solitary wave moves over 
the uniform depth (d = 1) without changing shape before reaching the shelf, 
it  breaks up into a finite number of solitons (n) on the shelf provided that 

do = [+n(n+ I)]+, (3) 

where do is the depth of the shelf and n is an integer (n >, 1). This result has also 
been derived recently by Tappert & Zabusky (1971)?, who discuss two other pro- 
blems concerning the Korteweg-de Vries equation and inhomogeneous media. 
In  this paper they assume that the appropriate constant-coefficient KV equation 
is applicable in the second uniform region (a point discussed in some detail in I). 
From (3) it follows that the shelf must be shallower than the uniform depth 
(i.e. do < 1). The number n of solitons formed is then independent of the shape 
of the shelf formation. 

The purpose of this paper is to describe some numerical solutions of (2) with 
a solitary-wave initial condition, 

u([, 0) = 12sech2[, (4) 

and shelves of various depths. An attempt is made to confirm the soliton forma- 
tion and, more importantly, to discuss the situation when the shelf depth (do)  
does not satisfy (3). 

The numerical scheme used is of standard form, being centred in both the 
time-like co-ordinate X and the space-like co-ordinate 6. This scheme was used 
by Zabusky & Kruskal (1965) for their studies on the constant-coefficient KV 
equation. Very recently, Vliegenthart ( 197 1) has discussed various numerical 
procedures for the KVequation, in particular the one used by Zabusky & Kruskal. 
He has derived a stability criterion for the scheme which has been confirmed by 
the present author in some trial runs. 

2. Basis for the equation 
Briefly the genesis of the variable-coefficient KV equation (2) is as follows. 

Consider a small amplitude motion defined by the parameter E (so that E = maxi- 
mum amplitude/depth) on a uniform depth of water. For shallow-water waves 
(6 = depth/wavelength < 1), it is possible to derive the classical Korteweg-de 
Vries equation in a far-field (distance or time O(s-l), linearized characteristic 
O(1)) if we choose a2 = O(E) .  This ad hoc assumption (Korteweg & de Vries 
1895) about the two (independent) parameters ensures that nonlinear (8 )  and 
dispersive (a2) effects are of the same order. Changes of undisturbed depth do 
not occur. 

If the same analysis is pursued but the depth is now allowed to vary slowly 
on the scale of E ,  then the far-field (distance O(s-l)) approximation incorporates 
the effects of changing depth. The near-field first approximation is, of course, 
unaltered since the depth approaches a constant as s+O. The resulting 

7 The author is indebted to a referee for introducing him to this paper. 
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equation then has terms depending on the depth, nonlinearity and dispersion, 
all being of order unity, and can be written in terms of the independent 
variables 

I X = ex (far-field distance co-ordinate), 

( = l z d - t ( c r )  dx - t = O( 1)  (appropriate characteristic co-ordinate), 
0 

where x and t are the original (non-dimensional) space and time variables 
respectively. When the attenuation factor of d-4 (usually called Green’s Law) is 
removed the final equation takes the form 

uX+d~Uut+d+Ut55 = 0, d = d ( X ) ,  P a )  

where u((, X )  is proportional to the elevation of the wave. Note that in (2a) the 
region of changing depth (d = O( l), X = O( 1)) is of the same order of magnitude 
as the ‘period’ (6  = O( 1)) of the wave. However, in the original non-dimensional 
(physical) variables the region of changing depth is extended (having length of 
O(s-l),e-+O) and the ‘wavelength’ is still O(1). The change in depth need not 
be sudden even as a function of the far-field co-ordinate X .  In fact it is straight- 
forward to show that, in particular, the change in depth may occur asymptotic- 
ally rapidly or slowly. 

The derivation outlined above is explained in detail in I, as is the application 
of classical KV theory to (2a). We note that if the depth d ( X )  is constant then 
(2a) is the standard KV equation. If d varies over some finite range of X and 
outside this range takes constant values, and the initial wave form is fixed, then 
solitons can appear on the shelf. However, this is only true if do c 1, where 

(6) i d ( X )  = I, x 6 0, 
d = d ( X ) ,  0 6 x 6 xo (X, < a), 

d ( X )  = d(X,) = a,, X > x,. 
In  I it is shown that if the depth of the shelf is given by do = [$n(n + I)]+, with 
n an integer, then exactly n solitons will develop and do is then an ‘eigendepth’. 
In  fact the solution asymptotically far along the shelf (X+co) is the same as if 
the initial wave were placed directly on the shelf itself and then allowed to 
develop. This equivalence to the flow on the shelf alone enables the solution for 
the solitons to be found from Miura’s theory for the constant-coefficient KV 
equation. This is simply because the relevant equation is (2a) with do replacing 
d ( X ) ,  and asymptotically the solution is independent of the form of d ( X )  in 
0 < X < X,. If the initial wave profile is the solitary wave 

u(6,O) = 12sech2f;, 

which is a steady-state solution of 

ux + uut f Utg = 0, 

then the n solitons (predicted by (2a)) can easily be shown to have amplitudes 

m2 (m = 1,2,  ..., n).  
24 

= 

6-2 
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The result (7a)  indicates a rather interesting phenomenon. As more solitons are 
formed (do+O) the maximum amplitude approaches a finite value and the 
minimum amplitude approaches zero : the maximum amplitude (given by 
m = n-tco) is 24 and the minimum amplitude (m = 1, n-tco) is 0 (always 
remembering that the limit do + 0 might eventually invalidate the KV equation, 
and that the experimentally observed amplitudes are proportional to umaxd&a, 
which is clearly non-uniform). 

Provided that only solitons are formed, that is, if there is an integer solution 
of (3) for given do, the picture seems clear and we have a theory. On the other 
hand, if there is not an integer solution we must look to numerical results to 
help clarify the situation (at present). Prom previous numerical work, together 
with the associated eigenproblem approach of Miura, the number of solitons can 
be predicted. Unfortunately an oscillatory wave, which is associated with the 
continuous spectrum of eigenvalues, is also present and trails behind the solitons. 
In  the case of the shelf problem, we expect the following picture. For any given 
do, (3) is satisfied if n is replaced by 

p =  -1 + &( 1 + 8d#, 

and for certain do, p will be integer ( = n). From Zabusky (1968) we have that 
the number of bound states of the related eigenvalue problem is N ,  where N is 
the largest integer satisfying N 6 p + 1. When p is an integer, then N = p + 1 
and the number of solitons (i.e. bound states) is p + 1, but one of these is of zero 
amplitude so that only p occur. However, when p is not an integer the latter 
soliton is no longer of zero amplitude. If we introduce 

A = I + p - N ,  O < A < l ,  

then the amplitudes of the solitons as predicted by (2a) are 

m = O , l ,  ... ( N -  1) .  24(A + W L ) ~  

P(P + 1) ' 

Note that when A = 0 this agrees with the formula (7a).  We can now predict 
that if do is such that the solution of (3) lies between two integers, say No and 
No + 1, then eventually No+ 1 solitons will appear along the shelf, together with 
an oscillatory wave. If the solution is close to No, then the last (smallest) soliton 
will have a small (but non-zero) amplitude (cc A2). Conversely, if the solution is 
close to No+ I, then the final soliton will have an amplitude almost equal to 
24/N0(N0+ 1) (A2 M 1). The purpose, then, of this paper is to confirm the above 
predictions for the variable-coefficient KV equation and to observe the oscillatory 
component of the final solution. 

3. Numerical scheme 

( 2 )  is 
A difference equation that approximates the variable-coefficient KV equation 

u:+' = %;-I- &d$(AX/AC) (US,, + U: +a;-,) ( ~ j + ~  - u;-,) 

- C ~ ~ [ A X / ( A ~ ) ~ ]  (u;+~ - Zuj,., + Zuji-, - u;-~), (8) 
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where uj = u(jA(,iAX) and A6 and AX are the appropriate step lengths. The 
local depth is 

The truncation error in (8) is proportional to (AX)3 and A6(AX)2 (i.e. which ever 
is the larger). Since the scheme is centred in X, as well as in 6, the initial step in X 
can be found by using a standard forward-integration procedure. Vleigenthart 
(1971) shows that (8) does not contain any numerical damping, but that the 
solution will grow indefinitely unless 

di = d(iAX). (9) 

It is also worth noting that the integration scheme conserves momentum and 
almost conserves energy (with error proportional to (AX)2). 

The initial condition can be written as 
u: = 12 sech2 (jA6 - c ) ,  (11) 

where c is a constant which prescribes the position of the peak of the solitary 
wave on the 6 mesh. The integration was performed with 500 steps in 6 and 
with c so chosen that there was the maximum undisturbed region ahead of the 
initial wave while ensuring that, behind this wave, the amplitude was as close 
to zero as desired. Although we are dealing with a wave motion it is best to use 
co-ordinates fixed in space. This is simply because the solitons produced move 
at different speeds corresponding to their amplitudes, and thus we could travel 
with only one soliton, at  best. 

The coarsest mesh that is worth considering for the satisfactory reproduction 
of the solitons is A6 E 0.1. If we use this value in the stability criterion (10) and 
introduce the ‘worst’ values IuI = 24, di = 1, then we obtain AX < 1/4240. 
Vliegenthart (1971) has discussed the merits of his criterion and found, from 
numerical trials, that if solitary waves are being propagated (10) could be ex- 
ceeded by 50 % and still give stable solutions. With this in mind, and from trial 
runs by the author, it was decided to use 

A t  = 0.1, AX = 0.00025. (12) 

At no time, using the values (12), were any instabilities encountered. It is 
evident that, owing to the very small steps in X, the integration must run for 
an appreciable time in order to see the development of the waves. 

The shelf, d(X), was described by a cosine function for all the results discussed 
in this paper. This particular form was chosen for its simplicity and continuous 
first derivatives when joined to a constant depth (see figure 1). The actual 
expression used was 

% [ l + d o + ( ~ - d o ) ~ O S ( 7 ~ j / 4 0 ) ]  (0 <j < 40), 
a = {  (13) 

do (j > 40). 

Thus the region of changing depth was 0 < X < 0.01. Note that the detailed 
nature of the change in depth and its extent is irrelevant so far as the final 
soliton formation far along the shelf is concerned (see I). For the present inte- 
grations the region of change is of moderate length, being 40 steps in X .  
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d=do 

1 Y d= 1 Bed of channel 
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4. Numerical integration results 
For simplicity and ease of discussion we shall consider only the depths which 

correspond to the formation of two solitons (n = 2, do = 3-8 = 0.614), three 
solitons (n = 3,d0 = 6-% = 0.451) and values of depth between these two. In  
fact, this is by far the most satisfactory region to choose since Madsen & Mei 
(1969) quote results for do = 0.5, and we can compute this solution and compare 
with their paper. The solutions a t  various values of X for a given shelf depth 
will be reproduced in a single figure. Thus it will be possible to see the develop- 
ment of the solitary wave as X changes, that is as the wave moves along the shelf. 

It is worth making the point at this stage that, although it appears that the 
extent of the wave (approximately the period) more than covers the region of 
depth change, this is not the case. It must be remembered that in the original 
physical variables (5), the distance co-ordinate was stretched by c1(e-+  0) but 
the local characteristic co-ordinate (6)  was O( 1); Thus at each station X we may 
say that the wave profile takes a certain form as a function of E ,  i.e. for our KV 
equation X and [ are independent variables. Hence the problem is equivalent 
to a wave which changes in time (X) in a medium whose inhomogeneity is des- 
cribed by d ( X ) .  

The integration procedure outlined in $ 3  was performed on an IBM 360-67 
machine in the Computing Department of the University of Newcastle. The 
solution was printed out as an array on the < mesh, after a specified number of 
integrations in steps of AX. The maximum runs employed gave solution values 
up to X = 0.5. From the step length (12 , we see that this corresponds to 2000 

after such extended integrations, the only spurious oscillations ahead of the 
wave profiles were of amplitudes no larger than 0-0005 units, if they appeared 
at all. Such small values cannot be shown on the figures presented here. However, 
some oscillations (apart from those expected) did appear behind the profiles. 
These will be discussed later. 

Figures 2 and 3 give the wave profiles for the solitary wave moving onto a 
shelf of depth given by expression (3). Figure 2 shows the breakup into exactly 
two solitons. The shelf depth is do = 0.614 (n = 2) and the soliton amplitudes 
(from (7a))  of 4 and 16 are indicated on the figure. Figure 3 shows the corres- 
ponding profiles for three solitons: 

do = 0.451 (n = 3), soliton amplitudes = 2,8, is. 

steps, which took, on average, about 1 J 6rseconds of computing time. Even 
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- 4  0 4 8 

5 
FIGURE 2. Two-soliton formation, do = 0.614. -$ initial solitary wave and solution at 
X = 0.5; . - . , solution at X = 0.075; - - -, solution at X = 0.26. Short horizontal lines 
indicate predicted maxima at 4 and 16. 

20 -I 

-4  0 4 8 12 

5 
FIGURE 3. Three-soliton formation, do = 0.451. -, initial solitary wave and solution at 
X = 0.45; - . - ,  solutionatX = 0.05; --- , solution at X = 0.25. Short horizontal lines 
indicate predicted maxima a t  2, 8 and IS. 

Figures 4 and 5 show the profile on the shelf for depths that lie between 0.614 
and 0.451; do = 0.5 for the results plotted in figure 4 and do = 0.55 for figure 5 .  
In  these latter two figures the amplitudes predicted from (7 b )  are also given. 

5. Discussion of the results 
The formation of two and three solitons on the shelves of appropriate depth 

are confirmed in figures 2 and 3. It is also evident from the results that the 
solitary wave breaks up very slowly and consequently is virtually unchanged by 
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FIGURE 4. Intermediate depth, do = 0.5. __ , initial solitary wave and solution at  
X = 0.5; --- , solution a t  X = 0.25. Short horizontal lines indicate predicted maxima. 

- 4  0 4 
f; 

8 

FIGURE 5. Intermediate depth, do = 0.55. - , initial solitary wave and solution a t  
x = 0.5 ; - - -, solution a t  X = 0.25. Short horizontal lines indicate predicted maxima. 

the time it reaches the beginning of the shelf. (This tendency can also be ob- 
served in the work of Madsen & Mei (1969).) Thus we have the classical situation 
of a solitary wave which cannot propagate without deformation on the depth 
corresponding to the shelf. The wave then gradually develops to produce the 
appropriate number of solitons only. The soliton maxima predicted by the 
expression (7a)  are also confirmed. That the amplitudes agree so well indicates 
that only the discrete eigenvalues are present (as predicted), the contribution 
from the continuous spectrum being zero in this case. 

Turning to the other two integrations (figures 4 and 5),  we must examine 
these solutions a little more carefully. At first sight, the solution for do = 0.5 
is just three solitons, but we observe a number of differences. The most obvious 
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-10 -8  -6 -4 -2 0 
f 

FIGURE 6. Oscillatory ‘tails’ of the four integrations all a t  X = 0.5. The curves have the 
same origin (the peak of the initial solitary wave). Solutions: . . . , d 0 - - 0.451; -.-, 
do = 0.5; - , do = 0.55; - - -, do = 0.614. 

is that only the first soliton (largest amplitude) is fully developed (i.e. essentially 
zero at  both ends). The other two deviate considerably from a solitary wave 
profile, especially the last of the trio. Similar observations may be made for the 
depth do = 0.55 (figure 5), for which the final wave has an extremely small 
amplitude and is not yet fully developed. 

Looking in more detail, we may compute the theoretical soliton amplitudes 
from the formula ( 7 b ) .  These are given in figures 4 and 5. We note that the 
agreement is very good indeed, confirming the validity of constant-coefficient 
KV theory in this variable-depth problem. Since the agreement is based on the 
assumption that both the continuous and discrete spectra contribute, an oscil- 
latory wave is to be expected to appear to the Ieft of the solitons. Thus it is 
instructive to examine the ‘tails’ of all the integrations (since these cannot be 
plotted on figures 2-5). I n  figure 6 the relevant portions of the four integrations 
at X = 0.5 are reproduced on a greatly magnified scale. All the curves have the 
same origin, that is, the peak of the initial solitary wave. The oscillations behind 
the ‘exact soliton’ solutions, i.e. those for do = 0.451 and 0-614, are small 
(<  0.006 units, or 0-05 % of the initial profile). Since no oscillations can arise 
from the continuous spectrum in these two cases, these oscillations must be due 
to an accumulation of errors in the integration scheme. Such oscillations are 
well known and arise from the linear terms of the KV equation, which produce 
short-wave disturbances of the form exp i (wt  - kx), propagating to the left. 
(These were encountered by Zabusky (1968) and Vliegenthart (1971), and arise 
from the short-wave behaviour discussed in detail by Benjamin, Bona & Mahony 
(1971). A smaller value of the mesh size AX would reduce these particular 
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oscillations (ultimately to zero) but would, of course, increase the computing 
time (ultimately to infinity). A check to confirm this was made.) The occurrence 
of oscillations behind the solitons for the other two cases, do = 0.5 and 0.55, is 
to be expected even in the absence of numerical errors since they arise from the 
non-zero continuous spectrum in those cases. These oscillations were found to 
stay appreciably the same when A X  was (slightly) altered. 

From figure 5, apart from the obvious differences in amplitude between the 
integer and non-integer solutions, we observe that the oscillations for the two 
non-integer problems (do = 0.5 and 0.55) are very similar, which is perhaps 
rather surprising. Both these waves are of almost identical amplitude and shape, 
but slightly shifted in phase. Now Zabusky (1968) has shown that the momentum 
carried by these waves is proportional to A( 1 -A),  and has suggested that if the 
momenta (and energy, etc.) were equal for otherwise different solutions then the 
oscillatory parts would probably be very similar. In  the present case, A has been 
found to be given by 

A = 0.31, with A ( l  -A)  = 0.21 for do = 0.55, 
A = 0.62, with A( 1 - A )  = 0.23 for do = 0.5, 

values which agree to within 10 %. An attempt to check the momenta directly 
was made, but found impossible without extending the integrations, probably 
half as far again, to ensure that the solitons were sufficiently isolated from the 
oscillatory solution. Exactly the same difficulty was encountered by Zabusky 
(1968). 

Finally, the results obtained here can be compared with those computed by 
Madsen & Mei (1969) for the shelf of depth 0-5. A similar comparison was made 
by Tappert & Zabusky (1971), using only theoretically predicted values. Direct 
agreement cannot be expected since the variable-coefficient KV equation was 
derived by introducing a single small parameter into the full equations and 
developing an asymptotic expansion. On the other hand, Madsen & Mei used 
essentially the full equations for integration purposes. However, the form of 
solution compares very well. For example, observe the great similarity between 
our solution for X = 0.25 (figure 4) and the profile reproduced in figure 5 ( c )  of 
Madsen & Mei’s paper. It is encouraging to see that the variable-depth KV 
equation incorporates all the characteristics obtained from a more complete 
numerical study of the problem. To check more than just qualitative agreement 
we can compare the amplitudes of the first three peaks. From figure 4, and 
Madsen & Mei (1969), we have the results shown in table 1, in which Madsen & 
Mei’s results have been normalized to a solitary wave amplitude of 12. Note 
that the amplitudes quoted from figure 4 and expression (7 b )  have been increased 
by the factor (see $2). It is clear that the agreement is fairly good but the 
two smaller peaks are slightly in error (in particular the smallest one; this is 
probably due to this soliton not being fully developed). With the differences 
outlined above, together with no detailed knowledge of the initial profile used 
by Madsen & Mei, the results in table 1 might well be regarded as satisfactory. 

In  conclusion, this paper has examined some numerical solutions of a variable- 
coefficient Korteweg-de Vries equation. The particular equation discussed was 
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prediction (7b) 
numerical Present results 

Initial wave Peak 1 Peak 2 Peak 3 

12 20.5 7.88 1.16 
12 20.8 7.8 1.3 

Madsen & Mei 12 20 9 2 

TABLE 1 

previously derived by the author in a study on solitary waves moving onto a 
shelf (I), and the results have been presented from this point of view. Solutions 
for various shelf depths have been obtained. In  particular, the two- and three- 
soliton formation has been confirmed and the wave profiles corresponding to 
depths intermediate between these two cases have been analysed in some detail. 
A fair agreement has been obtained with the full integrations of Madsen & Mei 
(1969), who in turn obtained some agreement with experimental data. 

One point not studied in detail in this paper is the effect, if any, of changing 
the form of the depth variation and altering X,, for a given shelf depth. Such a 
numerical study would, hopefully, validate the theoretical results used here and 
give some insight into the corresponding conservation laws for the equation. 
This comprehensive examination was thought to be beyond the direct aim of 
this paper, but the author intends to begin such a protracted study now that the 
relevance of the equation appears justified. 
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